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Geophysical limits to global wind power

Kate Marvel'*, Ben Kravitz? and Ken Caldeira?

We distributed representations of wind turbines, at different densities,

B Across the entire surface of the Earth
B Throughout the volume of the atmosphere

How much power can be produced?
What are the effects on climate?

| would like to hire a postdoc to continue this work, looking at smaller spatial scales.
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9Spatial Distribution of Generation of Lorenz’s Available Potential Energy
in a Global Climate Model#

Eva AHBE AND KEN CALDEIRA
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Fig. 3. Annual mean near-surface kinetic energy (KE) dissipation caused by
drag (4) in the preindustrial climate and (B) for the largest simulated wind
farm in the Atlantic with an area of 1.9 Mkm”. (C) Kinetic energy extraction
(KEE) within the largest wind farm in the Morth Atlantic. KE extracted by
wind turbines is partially compensated for by a reduction in KE dissipation
into the boundary layer caused by surface drag. Surplus energy extracted
locally is compensated for by a regional decrease of KE dissipation into the
boundary layer outside the wind farm.
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About ~10 W/m? for the best parts
of the North Atlantic compared
with 2 or 3 W/m? for the best parts
of North America.
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Fig. 2. (4) Map of wind farm locations. (B and C) Regional medians (=) and
rinirmum-maximum ranges (lines) of annual mean kinetic energy extraction
(KEE) in (B) watts meter ¢ and (C) terawatts as function of wind farm area.
Linear regression is fitted through the median KEE points against the com-
mon legarithm of the wind farm areas in the North Atlantic (salmon) and
North America (light blue). Slopes and P values of fit are given. Precise KEE
values and areas are in Table 51.



Downward influx
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The Kinetic Energy Budget of the Atmosphere (KEBA) model 1.0:
a simple yet physical approach for estimating regional wind
energy resource potentials that includes the Kinetic

energy removal effect by wind turbines

- Energy extraction by
Axel Kleidon! and Lee M. Miller? Df::a“f ;”"E" ' wind turbines
P (electricity yield Payw

+ wake turbulence Dais)

An incorrect view that | shared:

Kinetic energy removed from the near-surface boundary is St ot ey
ok i

Atmospheric limit

replenished by a downward influx of kinetic energy from above.
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Physical limits of wind energy within the atmosphere and its
use as renewable energy: From the theoretical basis to
practical implications

AXEL KLEIDON*
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Atmospheric pressure gradients and Coriolis forces provide geophysical Y-
limits to power density of large wind farms "-. ~ Wind farm
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A better perspective: -

1. Near surface winds represent a balance between pressure gradient forces and (apparent) Coriolis forces.

2. When winds are slowed by wind turbines, Coriolis forces diminishes, result in an acceleration of air parcels
by large-scale pressure gradient forces.

3. Thus, kinetic energy removed from the atmosphere is replaced by large-scale potential energy gradients in
the atmosphere.



Applied Energy 281 (2021) 1160438

Contents lists available at ScienceDirect

Applied Energy

ELSEVIER

journal homepage: www.elsevier.com/locate/apenergy

Atmospheric pressure gradients and Coriolis forces provide geophysical
limits to power density of large wind farms

Enrico G.A. Antonini , Ken Caldeira
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An analytic framework based on well-established theory produces results that
are largely in agreement with results from fluid-dynamical model simulations.
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Maximum wind power extraction (at large scale!)
can be estimated from the Coriolis parameter
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Spatial constraints in large-scale expansion of wind
power plants

Enrico G. A. Antonini®*' and Ken Caldeira® P 2021 Vol. 118 No. 27 2103875118
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over wind farm downstream flow
d(I) Transition length scale (L) is proportional to:
G d_ geostrophic winds (G) divided by Coriolis parameter (f),
L X — ax which is proportional to
f f the horizontal pressure gradient (d ® / d x) divided by the Coriolis parameter (f).




Spatial constraints in large-scale
power plants

Enrico G. A. Antonini®*' and Ken Caldeira®
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Spatial constraints in large-scale expansion of wind

power plants

Enrico G. A. Antonini®’

and Ken Caldeira®

Wind speeds at hub height drop
to ~0.6 by the turbulent length
scale, which means wind power
drops by 80%.
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Identification of reliable locations for wind
power generation through a global
analysis of wind droughts
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What can we usefully say about

wind resources from a purely
geophysical perspective, without
Goal: Identify locations with — taking cost, current demand, etc,
into consideration?

B High mean wind-power density

B Low seasonal variability How do we reasonably combine

B | ow weather varia bility disparate metrics (power density,
variability) into a single metric?
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Energy deficit variability metrics

B Seasonal variability
Difference between hourly
climatological average wind power
and constant mean average

B Weather variability
Difference between hourly
reanalysis wind power and hourly
climatological averages

B Generation (normalized wind power density) a
[ Target generation (normalized climatological wind power density)
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Conclusions

B There are a lot of places with strong, reliable winds, but not everywhere
B At regional scale in good places, 2 W/m? =2 MW/km? is a reasonable expectation

B This value is limited by the ability of large-scale pressure forces to replenish energy
removed by wind turbines

The length scale for replenishment is proportional to wind speeds and inversely proportional
to the Coriolis parameter (and so shorter at high latitudes), but is typically some 10s of km
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